查询结果如下:
Thermoregulation in animals |
---|
During cold weather many animals increase their thermal inertia by huddling. Animals also engage in kleptothermy in which they share or even steal each other's body warmth. In endotherms such as bats and birds (such as the mousebird and emperor penguin) it allows the sharing of body heat (particularly amongst juveniles). This allows the individuals to increase their thermal inertia (as with gigantothermy) and so reduce heat loss. Some ectotherms share burrows of ectotherms. Other animals exploit termite mounds. ![]() An ostrich can keep its body temperature relatively constant, even though the environment can be very hot during the day and cold at night. Hibernation, estivation and daily torporTo cope with limited food resources and low temperatures, some mammals hibernate during cold periods. To remain in 'stasis' for long periods, these animals build up brown fat reserves and slow all body functions. True hibernators (e.g., groundhogs) keep their body temperatures low throughout hibernation whereas the core temperature of false hibernators (e.g., bears) varies; occasionally the animal may emerge from its den for brief periods. Some bats are true hibernators and rely upon a rapid, non-shivering thermogenesis of their brown fat deposit to bring them out of hibernation. Variation in animalsNormal human temperatureMain article: Normal human body temperature Previously, average oral temperature for healthy adults had been considered 37.0 °C (98.6 °F), while normal ranges are 36.1 to 37.8 °C (97.0 to 100.0 °F). In Poland and Russia, the temperature had been measured axillarily (under the arm). 36.6 °C (97.9 °F) was considered 'ideal' temperature in these countries, while normal ranges are 36.0 to 36.9 °C (96.8 to 98.4 °F).[citation needed]
Measured temperature varies according to thermometer placement, with rectal temperature being 0.3–0.6 °C (0.5–1.1 °F) higher than oral temperature, while axillary temperature is 0.3–0.6 °C (0.5–1.1 °F) lower than oral temperature. The average difference between oral and axillary temperatures of Indian children aged 6–12 was found to be only 0.1 °C (standard deviation 0.2 °C), and the mean difference in Maltese children aged 4–14 between oral and axillary temperature was 0.56 °C, while the mean difference between rectal and axillary temperature for children under 4 years old was 0.38 °C. Variations due to circadian rhythmsIn humans, a diurnal variation has been observed dependent on the periods of rest and activity, lowest at 11 p.m. to 3 a.m. and peaking at 10 a.m. to 6 p.m. Monkeys also have a well-marked and regular diurnal variation of body temperature that follows periods of rest and activity, and is not dependent on the incidence of day and night; nocturnal monkeys reach their highest body temperature at night and lowest during the day. Sutherland Simpson and J.J. Galbraith observed that all nocturnal animals and birds – whose periods of rest and activity are naturally reversed through habit and not from outside interference – experience their highest temperature during the natural period of activity (night) and lowest during the period of rest (day). Those diurnal temperatures can be reversed by reversing their daily routine. Variations due to human menstrual cyclesDuring the follicular phase (which lasts from the first day of menstruation until the day of ovulation), the average basal body temperature in women ranges from 36.45 to 36.7 °C (97.61 to 98.06 °F). Within 24 hours of ovulation, women experience an elevation of 0.15–0.45 °C (0.27–0.81 °F) due to the increased metabolic rate caused by sharply elevated levels of progesterone. The basal body temperature ranges between 36.7–37.3 °C (98.1–99.1 °F) throughout the luteal phase, and drops down to pre-ovulatory levels within a few days of menstruation. Women can chart this phenomenon to determine whether and when they are ovulating, so as to aid conception or contraception. Variations due to feverFever is a regulated elevation of the set point of core temperature in the hypothalamus, caused by circulating pyrogens produced by the immune system. To the subject, a rise in core temperature due to fever may result in feeling cold in an environment where people without fever do not. Variations due to biofeedbackSome monks are known to practice Tummo, biofeedback meditation techniques, that allow them to raise their body temperatures substantially. Low body temperature increases lifespanIt has been theorised that low body temperature may increase lifespan. In 2006, it was reported that transgenic mice with a body temperature 0.3–0.5 °C (0.5–0.9 °F) lower than normal mice lived longer than normal mice. This mechanism is due to overexpressing the uncoupling protein 2 in hypocretin neurons (Hcrt-UCP2), which elevated hypothalamic temperature, thus forcing the hypothalamus to lower body temperature. Lifespan was increased by 12% and 20% for males and females, respectively. The mice were fed ad libitum. The effects of such a genetic change in body temperature on longevity is more difficult to study in humans; in 2011, the UCP2 genetic alleles in humans were associated with obesity. Limits compatible with lifeThere are limits both of heat and cold that an endothermic animal can bear and other far wider limits that an ectothermic animal may endure and yet live. The effect of too extreme a cold is to decrease metabolism, and hence to lessen the production of heat. Both catabolic and anabolic pathways share in this metabolic depression, and, though less energy is used up, still less energy is generated. The effects of this diminished metabolism become telling on the central nervous system first, especially the brain and those parts concerning consciousness; both heart rate and respiration rate decrease; judgment becomes impaired as drowsiness supervenes, becoming steadily deeper until the individual loses consciousness; without medical intervention, death by hypothermia quickly follows. Occasionally, however, convulsions may set in towards the end, and death is caused by asphyxia. ArthropodaThe maximum temperatures tolerated by certain thermophilic arthropods exceeds the lethal temperatures for most vertebrates.
![]() ![]() ![]() 简典
![]()
×
|